JOSEPH PLATEAU

(1835)

PLATBAU, Joseph-Antoine-Ferdinand, naguit à Bruxelles. le 14 octobre 1801; son père, né à Tournai, avait un talent remarquable dans la peinture des fleurs. Élevé dans un milieu artistique, le jeune Joseph savait lire à six ans. Il fit des progrès rapides à l'école primaire; après avoir assisté un jour à une séance de physique amusante, il se promit de pénétrer tôt ou tard le secret de bien des faits mystérieux. Il n'avait que treize ans quand il perdit sa mère; il fut alors envoyé par son père à l'Académie de dessin où il finit par se distinguer entre tous ses condisciples; malheureusement il devint orphelin à quatorze ans. Il fut recueilli avec ses deux sœurs par son oncle maternel, l'avocat Thirion; après une maladie assez sérieuse, il se remit à fréquenter les cours de l'Académie; pendant la journée, il suivit avec grand fruit les leçons d'un excellent instituteur nommé Van der Meulen; le soir il se distrayait par des expériences de physique amusante; il construisait lui-même tous ses appareils et charmait les spectateurs par son adresse étonnante et par l'originalité de ses instruments.

A seize ans, il commença ses études moyennes à l'Athénée de Bruxelles, où il eut le bonheur d'avoir pour maîtres des initiateurs tels que Vautier et Quetelet qui ne tardèrent pas à prendre leur excellent élève en affection. C'est à partir de ces années que commença l'attachement voué par Adolphe Quetelet à son disciple Plateau, attachement que le temps n'a fait que rendre plus sincère et plus profond. C'est encore à cette époque qu'il se lia d'amitié avec le jeune Verhulst qui se fit plus tard un nom comme mathématicien, ainsi qu'avec son camarade d'études Nerenburger, devenu

plus tard général; leurs discussions servaient à leur instruction mutuelle; c'est ainsi que ce dernier communiqua au jeune Joseph le goût de l'astronomie; avec l'autorisation de Quetelet, ils passaient une partie de la nuit à l'Observatoire.

Après avoir terminé brillamment ses études moyennes en 1822, Joseph, malgré sa répugnance profonde pour le droit, se vit obligé par son tuteur d'entrer à l'Université de Liège et de se faire inscrire comme étudiant en philosophie et lettres. Dès l'année suivante, il passa avec succès la candidature en lettres et entra dans la Faculté de droit. Mais ayant pénétré un jour comme simple curieux dans l'auditoire du cours de chimie, il sentit se réveiller en lui son goût pour les sciences d'observation et résolut de faire marcher de front l'étude du droit et celle des sciences. Il montra tant d'ardeur qu'après avoir subi l'épreuve de candidat en droit, il se fit admettre trois mois après comme candidat en sciences physiques et mathématiques. Dès lors, il put s'adonner sans partage à la culture des sciences expérimentales.

Devenu tuteur de sa sœur Joséphine, il alla s'installer définitivement à Liège, et pour subvenir aux besoins de la vie, il accepta en 1827 une place de professeur de mathématiques à l'Athénée de cette ville; il sut bien remplir ses devoirs de professeur en même temps qu'il prépara son doctorat. Le 3 juin 1829, il reçut le diplôme de docteur en sciences physiques et mathématiques : il avait présenté une thèse remarquable, relative aux propriétés des impressions de la lumière sur l'organe de la vue. Malheureusement, la même année, il fit une expérience des plus dangereuse en regardant le soleil pendant plus de vingt-cinq secondes : bien longtemps après, ses yeux étaient encore irrités, injectés. En 1830, l'intérêt de sa santé le força de se démettre de ses fonctions de professeur à l'Athénée. Il quitta Liège pour retourner à Bruxelles. Bientôt une position nouvelle s'ouvrit à son activité: M. Gaggia, directeur d'un institut qui jouissait alors d'une excellente réputation, lui offrit une place de professeur dans son établissement; Plateau ne tarda pas à y conquérir l'affection de ses élèves et à occuper un range distingué dans la pléïade de jeunes savants que Quetelet aimait à réunir autour de lui, et cherchait à pousser dans les carrières scientifiques. C'est grâce à l'appui de son puissant protecteur qu'en 1835, il fut nommé professeur de physique à l'Université de Gand. D'après le témoignage d'un de ses meilleurs élèves, Hubert Valerius, son enseignement avait un cachet particulier: son langage était simple et très clair; en même temps il était doué d'un remarquable talent d'expérimentateur; chez lui, l'expérience avait le même degré de rigueur que la parole. En dehors de son enseignement, Plateau faisait une propagande active en faveur de la science. Il consacra tous ses efforts à compléter les appareils du cabinet de physique et à les mettre en rapport avec les progrès les plus récents.

Plateau se maria, le 27 août 1840, avec mademoiselle Augustine-Thérèse-Fanny Clavareau, fille d'un directeur des contributions; de ce mariage sont nés trois enfants : Félix, professeur à l'Université de Gand et membre de l'Académie; Ernest, ingénieur, attaché à l'administration des chemins de fer; Alice, mariée avec l'auteur de la présente notice.

Vers 1841, le brillant professeur sentit les premières atteintes d'une inflammation de la choroïde, provoquée sans doute par la fatale expérience de 1829; le mal frappa graduellement les deux yeux, empira pendant deux ans malgré les soins les plus assidus et les plus touchants, et dans le courant de l'année 1843, la cécité devint complète. Mais, comme l'a dit plus tard l'illustre Faraday, « si corporellement Plateau devait demeu- » rer plongé dans une triste et profonde nuit, la pénétration » de son esprit, devenue plus forte que jamais et secondée » par le dévouement de plusieurs collaborateurs, devait le » conduire aux découvertes les plus brillantes et conquérir

» pour la science belge une gloire immortelle. »

Encore élève de l'Université de Liège, il publia en 1828 un article sur les sensations produites dans l'œil par les diffé-

rentes couleurs. La même année, il étudia les apparences que présentent deux lignes tournant autour d'un point fixe avec un mouvement angulaire uniforme : il obtenait ainsi le moyen bien nouveau d'offrir à l'œil le spectacle des courbes les plus variées. Dans sa remarquable dissertation de 1829, il a établi les deux propositions suivantes: 1º une impression quelconque exige un temps appréciable pour sa formation complète, de même que pour son entière disparition; 2º la durée totale d'une impression est à très peu près égale à un tiers de seconde. Ces résultats ont permis à Plateau d'expliquer une foule d'illusions d'optique.

En 1830, Plateau est revenu sur la théorie des apparences produites par le mouvement simultané de deux lignes; il en a tiré les conséquences les plus curieuses; entre autres choses étonnantes, il a trouvé qu'un simple disque percé, tournant avec une vitesse convenable, permet non seulement d'animer en apparence des figures convenables et convenablement placées, mais encore de faire paraître immobile un objet en mouvement périodique très rapide. L'auteur attachait avec raison une grande importance à cette découverte : car on ne cesse d'utiliser le même procédé par exemple dans les cinématographes, sans jamais citer le nom du premier inventeur.

En 1833, Plateau publia un mémoire intitulé: Essai d'une théorie générale des apparences visuelles; c'était la première partie d'un grand travail qui devait embrasser l'étude de la persistance des impressions de la rétine, des couleurs accidentelles, de l'irradiation, des effets de la juxtaposition des couleurs et des ombres colorées. En ce qui concerne les couleurs accidentelles, l'auteur a constaté que les images succédant à la contemplation d'un objet coloré présentent les caractères suivants : persistance généralement très courte de l'impression primitive; apparition de l'image accidentelle; ordinairement disparitions et réapparitions successives et plus ou moins nombreuses de cette image.

Pour expliquer tous ces phénomènes, Plateau admet que

pendant la contemplation d'un objet coloré, la rétine exerce une réaction croissante contre l'action de la lumière qui la frappe, et tend à se constituer dans un état opposé; par conséquent après la disparition de l'objet, elle prend spontanément cet état opposé, d'où la sensation de la teinte accidentelle; ainsi naît un état oscillatoire entre la teinte primitive et la teinte accidentelle. Le principe de la réaction s'applique aussi aux impressions du tact.

Plateau s'attacha ensuite à l'étude de l'irradiation, c'est à dire du phénomène en vertu duquel un objet lumineux environné d'un espace obscur paraît plus ou moins amplifié; l'habile physicien imagina un appareil qui lui permit de formuler des lois bien remarquables. Quant aux autres apparences accidentelles de simultanéité, Plateau avait exposé ses idées générales dans un Supplément du Traité de la Lumière, de Herschel; la cruelle infirmité dont l'auteur a été frappé en 1843, le mit dans l'impossibilité de traiter le sujet en détail. Il parvint toutefois à un rapprochement fort ingénieux, savoir que les phénomènes des couleurs accidentelles simultanées sont, pour ainsi dire, relativement à l'espace ce que les couleurs accidentelles par succession sont par rapport au temps.

Si Plateau a eu de nombreux adversaires sur le terrain de la théorie de ces phénomènes, il leur résista avec honneur, souvent même avec succès; de plus, il n'a jamais eu de contradicteur sur le terrain des faits; comme l'a dit à bon droit le professeur Delsaulx, « ses études expérimentales sur » les apparences visuelles sont un modèle achevé de méthode » dans la recherche, de perspicacité dans l'analyse, de pré- » cision dans les mesures et de simplicité en même temps » que de clarté dans l'exposition. Il n'est point de travaux, » dans nos grandes collections académiques, capables de » former aussi sûrement et aussi rapidement à l'art de l'ex- » périmentation, un jeune homme désireux de contribuer au » progrès des sciences. »

En 1840, Plateau fit une observation fortuite qui lui donna

l'idée d'une expérience devenue célèbre : son préparateur avait versé un peu d'huile grasse dans un vase contenant un mélange d'eau et d'alcool; le professeur vit avec surprise les petites masses d'huile affecter la forme sphérique, comme si elles avaient été soustraites à l'action de la pesanteur. Il fit alors à dessein ce que son préparateur avait fait par hasard et sans but : il introduisit une grosse masse d'huile grasse dans un mélange d'eau et d'alcool en proportions convenables pour que le volume de l'huile introduite pesât précisément autant que le liquide alcoolique déplacé; voilà comment, dit-il, on obtient le singulier spectacle d'une masse considérable de liquide suspendue à l'état de liberté et affectant la forme d'une sphère parfaite.

Cette expérience a popularisé le nom de Plateau dans le monde entier; elle est devenue une source inépuisable de recherches non seulement pour l'auteur lui-même, mais encore pour de nombreux chercheurs aussi bien dans le domaine de la théorie que dans celui de l'observation.

En imprimant à la masse d'huile des vitesses convenables, l'auteur parvint à donner successivement à la sphère d'huile l'aspect d'une masse sphéroïdale, aplatie aux pôles et renflée à l'équateur, ou bien d'un large et bel anneau, ou d'une masse centrale sphérique entourée d'un anneau, ou enfin d'une série de masses isolées tournant autour de l'axe en même temps qu'elles tournaient sur elles-mêmes. Malgré les nombreuses et frappantes analogies entre ces phénomènes et ceux que présentent les masses planétaires, Plateau a montré rigoureusement qu'on se tromperait si l'on voulait tirer de ses expériences quelque induction à l'égard des faits astronomiques.

Après la publication de ces résultats si remarquables, Plateau poursuivit avec ardeur ses études dans la voie féconde qu'il venait d'ouvrir; il avait déjà réuni de nombreux matériaux, lorsque, hélas I se déclara la cruelle maladie qui devait rendre l'excellent observateur complètement aveugle. Après des souffrances inouïes, le malade reprit peu à peu

des forces, et bientôt il eut la satisfaction d'être délivré de toute préoccupation matérielle pour lui-même et pour les siens : en effet, le 29 juin 1844, il fut nommé professeur ordinaire et bientôt après, un arrêté royal qui fait autant d'honneur au ministre Ch. Rogier qui le contresigna, qu'au savant qui en fut l'objet, lui assura la jouissance de son traitement intégral.

A peine rétabli, Plateau dirigea de nouveau toutes ses idées vers les recherches qu'il avait dû si fatalement interrompre; grâce au généreux concours de plusieurs amis dévoués, parmi lesquels je dois citer principalement Duprez, Lamarle, Manderlier et Donny, la carrière de la science demeura ouverte pour lui; malgré l'infirmité dont il était atteint, il put mettre en ordre les matériaux qu'il avait amassés

et même entreprendre des recherches nouvelles.

Une fois en possession du moyen de soustraire un liquide à l'action de la pesanteur, Plateau se demande quelles sont les forces figuratrices qui assignent une forme déterminée à la masse liquide; il ne tarde pas à invoquer un principe d'après lequel tout liquide exerce sur lui-même une pression égale au produit de la courbure moyenne de la surface au point considéré, par un facteur constant qui dépend de la nature du liquide. Il démontre expérimentalement que cette pression émane d'une couche superficielle d'une épaisseur extrêmement minime; il vérifie le principe fondamental par les procédés les plus divers. Parmi les surfaces d'équilibre qui conviennent à une masse liquide sans pesanteur, il trouve outre la sphère, le plan et le cylindre à section circulaire; il fait voir qu'un cylindre devient instable quand sa longueur excède le contour de sa section droite; cette proposition explique de nombreux faits naturels. Les trois surfaces précédentes ne sont pas les seules figures de révolution possibles. Plateau en a étudié trois autres, qu'il a appelées respectivement onduloïde, nodoïde et caténoïde. Nous ne pouvons pas suivre ici l'auteur dans l'étude des propriétés de ces figures; rappelons seulement avec le professeur Delsaulx, que Plateau

concevait presque sans effort ce que le calcul analytique ne trouve qu'avec peine; ses raisonnements pleins de finesse font souvent songer au coup d'œil de Foucault, et ses recherches expérimentales éveillent tout naturellement le souvenir de la méthode de Faraday.

Une remarque bien simple fit découvrir à Plateau un nouvel et magnifique champ d'exploration : comme toute figure d'équilibre en relief a sa correspondante identique en creux, il s'en suit qu'une lame liquide mince réalisée dans l'air doit afficher la même figure que celle d'une masse liquide pleine et sans pesanteur. Pour étudier ces figures laminaires, il inventa un liquide spécial qu'il a appelé liquide glycérique et qui lui a permis de réaliser de grosses bulles persistant plusieurs heures. En outre, il parvint non seulement à déterminer la pression exercée par l'air renfermé dans une sphère laminaire, mais encore à calculer une valeur approchée du rayon d'activité sensible de l'attraction moléculaire.

A propos des figures d'équilibre qui ne sont pas de révolution, Plateau a énoncé un principe général qui permet de réaliser à l'état laminaire toute surface à courbure moyenne nulle dont on connaît soit la génération géométrique, soit l'équation en coordonnées finies. Il a appliqué son principe à la réalisation de plusieurs figures d'équilibre les unes plus compliquées que les autres, et toujours l'observation a confirmé la théorie sous des formes ravissantes. Rien de plus beau, aux yeux d'un mathématicien, que ces figures si légères, parées des plus brillantes couleurs et douées malgré leur fragilité extrême, d'une étonnante persistance.

Dans l'étude des combinaisons de lames liquides entre elles, il rappelle que les couches superficielles de chacune d'elles se trouvent dans un état continuel de tension, et que la force contractile produit en chaque point une pression normale égale au double produit de cette tension par la courbure moyenne de la surface. C'est la coexistence de ces deux forces, tension et pression normale qui a guidé Plateau dans l'étude des charmants systèmes laminaires qu'on obtient

en plongeant dans le liquide glycérique des charpentes en fils de fer dessinant les arêtes d'un polyèdre régulier quelconque. Voici les lois découvertes et vérifiées par J. Plateau pour tout système laminaire : 1° de chaque arête de la charpente solide part une lame; 2° à une même arête liquide n'aboutissent jamais que trois lames, et celles-ci font entre elles des angles égaux à 120°; 3° les arêtes liquides aboutissant à un même point liquide sont toujours au nombre de quatre, et forment entre elles des angles de 109°28'.

Quant à la théorie de la génération des lames liquides, Plateau établit à ce propos un principe fort curieux : la couche superficielle des liquides a une viscosité propre, parfois de beaucoup supérieure ou inférieure à la viscosité de l'intérieur de la masse.

Les recherches de Plateau dans ce domaine ont été exposées dans un ouvrage capital intitulé: Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Ces recherches ont répandu sa renommée scientifique dans les deux mondes; à l'étranger comme en Belgique, les savants ont reconnu unanimement l'étonnante beauté des expériences du physicien belge, leur haute importance pour la physique moléculaire et leur fécondité incontestable.

Nous venons d'indiquer les champs d'exploration où J. Plateau a recueilli ses plus belles découvertes, mais son œuvre scientifique est plus vaste encore : elle comprend en outre une série bien longue de travaux sur des sujets divers. Nous ne pouvons évidemment pas songer à les passer ici tous en revue; nous nous bornerons à en signaler quelques-uns, et à renvoyer pour les autres à la liste complète donnée à la fin de cet article.

Si l'on fait tomber un rayon lumineux sous l'incidence rasante sur une lame polie et concave, ce rayon se réfléchit en traçant une traînée lumineuse glissant le long de la lame. Voilà comment Plateau a forcé la lumière de marcher suivant un ligne courbe, telle qu'une portion de circonférence, de parabole, etc.

Donnons maintenant quelques résultats où Plateau apparaît comme mathématicien. En guise de récréation mathématique, il se donne un nombre impair quelconque mais non terminé par un 5, et démontre qu'on peut toujours trouver un nombre entier tel que le produit de celui-ci par le nombre donné soit formé uniquement de la répétition d'un même chiffre assigné d'avance. Il est parvenu ensuite à signaler aux géomètres des exemples bizarres de discontinuité en analyse : par exemple, il déduit d'une courbe qui a un point multiple à tangentes distinctes, une autre courbe ayant un point saillant. Il déduit de là l'existence d'une espèce toute nouvelle de points singuliers qu'il a appelés points de dédoublement.

Mais il y a un travail où Plateau a donné la mesure de sa puissance d'investigation en analyse : c'est celui où il soumet au calcul la question de savoir si, conformément à une croyance populaire, le tombeau de Mahomet a pu être suspendu en l'air par l'action de forts aimants; or il a pu démontrer très simplement que, dans ces conditions, l'équilibre stable est absolument impossible, quels que soient le nombre et la distribution des barreaux.

Faut-il citer encore d'autres publications de l'infatigable travailleur? Nous pensons que ce serait dépasser les limites de cet article biographique; bornons-nous à dire que partout éclate une grande originalité dans les idées de Plateau, jointe à une simplicité vraiment surprenante dans les instruments qu'il a mis en usage pour les contrôler.

La brillante carrière de Plateau devait nécessairement lui faire décerner de nombreux témoignages d'estime et d'admiration non seulement dans le monde savant, mais encore de la part du Gouvernement.

Le 15 avril 1834, il fut élu correspondant de l'Académie royale et le 15 décembre 1836, membre titulaire. — En 1835, il fut nommé professeur extraordinaire à l'Université de Gand, et le 29 juin 1844, professeur ordinaire, bien que sa cécité l'empêchât de remplir ses fonctions. — Il a remporté deux fois le prix quinquennal des sciences physiques et mathéma-

tiques, savoir en 1854 pour la période 1849-1853, et en 1869 pour la période 1864-1868. Nommé chevalier de l'Ordre de Léopold le 13 décembre 1841, il fut promu au grade d'officier le 15 novembre 1859, et à celui de commandeur le 28 mai 1872, à l'occasion du centième anniversaire de l'Académie royale des sciences, des lettres et des beaux-arts.

Dès 1841, il fut nommé correspondant de la Société philomatique de Paris, et membre honoraire de la Société de physique et d'histoire naturelle de Genève; il devint successivement membre honoraire ou correspondant de la Société des sciences naturelles du canton de Vaux, de l'Institution royale de Londres, de la Société batave de physique de Rotterdam, de la Société de physique de Francfort-sur-Mein, de la Société des sciences naturelles de Cherbourg, de la Société des amis des sciences naturelles de Berlin, de la Société de physique de Londres, de la Société libre d'émulation de Liège et de la Société française de physique de Paris; enfin, il eut l'insigne honneur d'être correspondant de l'Institut de France, membre de l'Académie des sciences de Berlin et l'Académie royale des sciences d'Amsterdam, membre étranger de la Société des sciences de Göttingue et de la Société royale de Londres.

Citons enfin un fait qui jette un grand éclat sur le nom de Plateau, c'est la création à l'Université de Göttingue d'un cours spécial sur les surfaces à courbure moyenne nulle, création provoquée par les belles expériences sur les figures d'équilibre des liquides sans pesanteur.

Terminons par quelques particularités de la vie de Joseph Plateau : il était d'une complexion faible; mais par une heureuse compensation, il était d'un caractère vif et enjoué; il avait une mémoire très fidèle, qui finit par devenir prodigieuse; presque octogénaire, il n'avait besoin que d'entendre une ou deux fois la lecture d'un petit morceau de poésie pour être en état de le répéter exactement. Il aimait beaucoup à visiter les savants, et les accueillait chez lui avec le plus grand plaisir. Dans sa conversation, il se dépouillait

d'une supériorité qui lui appartenait, avec autant de soin que d'autres affectent d'en avoir une qui ne leur appartient pas. Autant il respectait les droits de priorité des autres chercheurs dès qu'il les connaissait, autant il aimait à se voir attribuer ses propres inventions.

Plateau était un chrétien convaincu; il se désolait châque fois qu'un savant se prévalait des progrès merveilleux de la science pour avancer des doctrines matérialistes ou antireligieuses; la religion, disait-il, est un baume céleste pour toutes les souffrances morales ou physiques, et c'est un crime de lèse-humanité que de chercher à en priver les malheureux ici-bas. Quant à lui, plus il avait approfondi les secrets de la nature, plus il s'inclinait devant les mystères de l'ordre surnaturel. Comme tous les grands penseurs, il était très sobre; c'est sans doute grâce à la régularité de sa vie qu'il a pu jouir si longtemps d'une verte vieillesse et conserver jusqu'à son dernier jour la pénétration si forte de son intelligence.

Joseph Plateau mourut le 15 septembre 1883, à l'âge de près de 82 ans. Ce triste évènement produisit une émotion profonde dans le monde savant; on exprima des regrets unanimes dans toutes les Académies ou sociétés scientifiques auxquelles appartenait le défunt; partout on rappela les titres glorieux de notre éminent compatriote; mais personne, sans doute, ne le fit avec autant de bonheur et d'éloquence que le Recteur de l'Université de Gand, M. Albert Callier, à la séance d'ouverture solennelle des cours, le 16 octobre 1883 : «L'Université de » Gand, dit-il, a perdu un homme qui a été plus qu'un profes-» seur éminent, plus qu'un savant justement estimé, et dont on » peut dire sans dépasser la mesure, qu'il a été un homme de » génie... Depuis longtemps Plateau n'enseignait plus; mais » l'Université était trop fière de compter parmi ses serviteurs » un esprit de cette puissance pour qu'elle pût jamais consentir » à se séparer de lui : la mort seule a pu le lui ravir, et jusque » dans sa vieillesse vénérée, M. Plateau a été l'orgueil et l'or-» nement de notre Alma Mater. Je ne veux pas retracer ici la » noble vie de notre collègue, toute dévouée à la science, » dominée par l'idée du Vrai, du Bien, et je puis dire du Beau, » car... on admire dans ses travaux cette splendeur du Vrai qui » selon Platon est la Beauté absolue...

» Ce dont je puis parler, Messieurs, c'est non pas des » découvertes du savant..., mais du savant lui-même, de » l'homme dont la grandeur était aussi admirable. Il s'était dès » la première jeunesse consacré à la science avec une ardeur » et une passion extrêmes. Il l'aimait d'un amour entier, absolu, » de toutes les forces de son âme, oubliant tout pour elle, » jusqu'à la prudence... Tous les honneurs que peut envier un » savant étaient venus à Plateau sans que jamais il les eût » recherchés; car tout en ayant conscience de sa valeur, il » était la modestie même... L'Université sur qui rejaillissait » l'éclat de sa réputation, lui conservera toujours un sou-» venir profondément reconnaissant. Mais ce n'est point assez, » et vous me permettrez d'émettre ici un vœu : ...je voudrais » qu'elle consacrât son souvenir par un monument durable » qui pût le transmettre aux générations futures : je crois » qu'il serait juste, désirable qu'un buste ou un portrait rap-» pelât ici même les traits de ce professeur illustre, dont le » nom restera une gloire pour l'Université. »

Ce vœu a été rempli : un buste de Joseph Plateau a été placé non seulement dans le péristyle de l'Université, mais encore dans le grand auditoire de physique générale. De son côté, l'administration communale de la ville de Gand où Plateau a résidé pendant près d'un demi-siècle et où il a fait ses plus belles découvertes, a donné le nom de Joseph Plateau à la rue longeant la façade principale du nouvel Institut des sciences. Une des rues de Bruxelles, où est né l'illustre physicien, porte également son nom.

† G. VAN DER MENSBRUGGHE.

SOURCES

Souvenirs personnels. - Annuaire de l'Académie royale, 1885, pp. 389 et suiv.

PUBLICATIONS DE J.-A.-F. PLATEAU

MÉMOIRES DE L'ACADÉMIE

Essai d'une théorie générale comprenant l'ensemble des apparences visuelles qui succèdent à la contemplation des objets colorés, et de celles qui accompagnent cette contemplation : c'est-à-dire la persistance des impressions sur la rétine, les couleurs accidentelles, l'irradiation, les effets de la juxtaposition des couleurs, les ombres colorées, etc., 1834. Mém. des membres, t. VIII.

Mémoire sur l'irradiation, 1839. Ibid., t. XI.

Mémoire sur les phénomènes que présente une masse liquide libre et soustraite à l'action de la pesanteur, 1^{re} partie, 1843. Ibid., t. XVI.

Analyse des eaux minérales de Spa, faite sur les lieux, pendant l'été de l'année 1830, 1844. Ibid., t. XVII.

Recherches expérimentales et théoriques sur les figures d'équilibre d'une masse liquide sans pesanteur, 2° série, 1849. Ibid., t. XXIII.

Idem, 3º série, 1856. Ibid., t. XXX.

Idem, 4e série, 1858. Ibid., t. XXXI.

Idem, 5e et 6e série, 1861. Ibid., t. XXXIII.

Sur un problème curieux de magnétisme, 1864. Ibid., t. XXXIV.

Recherches expérimentales et théoriques sur les figures d'équilibre d'une masse liquide sans pesanteur, 7° série, 1866. Ibid., t. XXXVII.

Idem, 8e série, 1868. Ibid.

Idem, 9e série, 1868. Ibid.

Idem, 10° série, 1868. Ibid.

Idem, 11e série, 1868. Ibid.

Bibliographie analytique des principaux phénomènes subjectifs de la vision depuis les temps anciens jusqu'à la fin du XVIII^e siècle, suivie d'une bibliographie simple pour la partie écoulée du siècle actuel, 1877, t. XLII:

Première section : persistance des impressions sur la rétine.

Deuxième section : couleurs accidentelles ordinaires de succession.

Troisième section: images qui succèdent à la contemplation d'objets brillants.

Quatrième section: irradiation, 1878.

Cinquième section : phénomènes ordinaires de contraste.

Sixième section: ombres colorées, avec supplément.

Deuxième supplément à la bibliographie analytique pour 1878-1879. Ibid., t. XLIII. Troisième supplément à la bibliographie analytique pour 1880-1881-1882. Ibid., t. XLV.

BULLETINS DE L'ACADÉMIE (1re série)

Note sur un phénomène de vision. Bullet. de la séance du 6 décembre 1834; insérée dans le t. IX des Mém.

Sur un principe de photométrie, 1835, t. II, p. 52.

Note sur un phénomène particulier qui se produit dans les yeux de l'auteur, 1835. Ibid., p. 84.

Notice sur l'anorthoscope, 1836, t. III, p. 7: erratum à la page 65.

Note sur la figure de la nappe liquide qui s'écoule par une fente étroite, rectiligne et verticale, partant du fond d'un réservoir et s'élevant jusqu'au-dessus du niveau du liquide, 1836. Ibid., p. 145.

Addition à la note précédente, 1836, t. III, p. 222.

Sur un nouveau moyen de déterminer la vitesse et les particularités d'un mouvement périodique très rapide, tel que celui d'une corde sonore ou vibrante, etc., 1836. Ibid., p. 364.

Note sur l'irradiation, 1839, t. VI, Ire partie, p. 501.

Deuxième note sur l'irradiation, 1839, t. VI, 2e partie, p. 102.

Sur les phénomènes que présente une masse liquide libre et soustraite à l'action de la pesanteur, 1842, t. IX, 1^{re} partie. p. 17.

Suite à ce travail, 1842. Ibid., ibid., p. 298.

Note sur une conséquence curieuse des lois de la réflexion de la lumière, 1842. Ibid., 2º partie, p, 10.

Sur un moyen de produire le vide à l'aide de la force centrifuge. Ibid., t. IX, août 1842.

Deuxième note sur le même sujet, 1843, t. X, 1re partie, p. 97.

Note sur des expériences d'optique, et sur un appareil pour vérifier certaines propriétés du centre de gravité, 1843. Ibid, 1^{re} partie, p. 310.

Note sur une nouvelle application curieuse de la persistance des impressions sur la rétine, 1849, t. XVI, 1^{re} partie, p. 424.

Deuxième note sur de nouvelles applications curieuses de la persistance des impressions sur le rétine. Ibid., ibid., p. 588.

Troisième note sur le même sujet, 1849. Ibid., 2e partie, p. 30.

Quatrième note sur le même sujet, 1849. Ibid., ibid., p. 245.

Sur les théories récentes de la constitution des veines liquides lancées par des orifices circulaires, 1856, t. XXIII, 1^{re} partie, p. 757.

Deuxième Série.

Note sur une récréation arithmétique, 1863, t. XVI, p. 62.

Sur un phénomène de couleurs juxtaposées, 1863. Ibid., p. 139.

Une expérience relative à la vapeur vésiculaire, 1871, t. XXXII, p. 251.

Sur la mesure des sensations physiques, et sur la loi qui lie l'intensité de ces sensations à l'intensité de la cause excitante, 1872, t. XXXIII, p. 376.

Réponse aux objections de M. Marangoni contre le principe de la viscosité superficielle des liquides, 1872, t. XXXIV, p. 404.

Un mot au sujet du mémoire de M. Delbœuf sur la mesure des sensations. Ibid., p. 141. Deuxième note sur une récréation arithmétique, t. XXXVIII, p. 469.

Notes sur les couleurs accidentelles ou subjectives, t. XXIX, p. 100, t. XLII, pp. 535 et 684.

Sur des exemples curieux de discontinuité en analyse, t. XLIII, pp. 84 et 255.

Sur une loi de la persistance des impressions dans l'œil, 1878, t. XLVI. p. 334.

Un petit paradoxe, 1879, t. XLVII, p. 346.

Un mot sur l'irradiation, 1879, t. XLVIII, p. 37.

Sur la viscosité superficielle des liquides. Ibid., p. 106.

Une application des images accidentelles, 1880, t. XLIX, p. 316.

Troisième Série.

Quelques expériences sur les lames liquides minces, 1881, t. II, p. 8.

Une application des images accidentelles, 2e note, 1881. Ibid., p. 281.

Une petite illusion, 1882, t. III, p. 24.

Sur des sensations que l'auteur éprouve dans les yeux, 1882. Ibid., p. 241.

Sur l'observation des mouvements très rapides spécialement lorsqu'ils sont périodiques; œuvre posthume, présentée dans la séance du 3 novembre 1883, t. VI, p. 484.

Quelques expériences sur les lames liquides minces; 2° note, œuvre posthume. Ibid., p. 704.

RAPPORTS

Rapport sur une notice de M. Melsens intitulée: Sur la persistance des impressions de la rétine. Bulletin de l'Académie, 1^{re} série, t. I, p. 477.

Rapport sur un mémoire de M. Duprez intitulé : Statistique des coups de foudre qui ont frappé des paratonnerres. Ibid., t. III, p. 463.

Rapport sur un mémoire de M. Bède intitulé: Recherches sur la capillarité. Ibid., t. VI, p. 405.

Rapport sur une note de M. Montigny relative à la vitesse du bruit du tonnerre. Ibid., t. IX, p. 6.

Rapport sur un mémoire de M. Bède relatif à la capillarité. Ibid., t. X, p. 47.

Rapport sur une note de M. Rousseau relative aux appareils servant à faciliter l'étude de la théorie des ondes lumineuses. Ibid., t. XI, p. 455.

Rapport sur un mémoire de M. Bède concernant la liaison entre les phénomènes de la capillarité et de l'endosmose. Ibid., t. XII, p. 111.

Rapports sur deux mémoires de M. Bède relatifs à l'équilibre d'une bulle d'air et à celui d'une goutte d'eau entre deux plans. Ibid., t. XIV, p. 442.

Rapport sur un mémoire de M. Valerius relatif à la distance focale des miroirs sphériques. Ibid., t. XV, p. 9.

Rapport un mémoire de M. Van der Mensbrugghe relatif à la théorie des courbes d'intersection de deux lignes droites tournant autour de deux points fixes. Ibid., t. XV, p. 613.

Rapport sur une note de M. Montigny relative à la scintillation des étoiles. Ibid., t. XVII, p. 435.

Rapport sur un mémoire de M. Lamarle relatif à la stabilité des systèmes liquides en lames minces. Ibid., p. 591.

Rapport sur deux notes de M. Brachet. Ibid., p. 435.

Rapport sur un travail de M. Van der Mensbrugghe relatif aux forces moléculaires des liquides. Ibid., t. XVIII, p. 124.

Rapport sur des notices de MM. Brachet et Vallée. Ibid., p. 314.

Rapport sur une note de M. Valerius relative à la constitution intérieure des corps. Ibid., t. XIX, p. 11.

Rapports sur deux notes de M. Delbœuf relatives à certaines illusions d'optique. Ibid., t. XIX, p. 154 et t. XX, p. 6.

Rapport sur un second mémoire de M. Lamarle relatif à la stabilité des systèmes laminaires. Ibid., t. XX, p. 220.

Rapport sur un travail de M. Delbœuf intitulé: Détermination rationnelle des nombres de la gamme chromatique. Ibid., t. XXI, p. 324.

Rapport sur un travail de M. Valérius sur un analyseur acoustique. Ibid., t. XXII, p. 203. Rapports sur deux notes de M. Van der Mensbrugghe sur la tension des lames liquides. Ibid., t. XXII, p. 207 et t. XXIII, p. 440.

Rapports sur deux mémoires de M. Bède relatifs à la capillarité. Ibid., t. XXIII, pp. 4 et 440.

Rapport sur un travail de M. Montigny sur le pouvoir dispersif de l'air. Ibid., t. XXIV, p. 508.

Rapport sur un mémoire de M. Docq sur l'appareil auditif. Ibid., t. XXV, p. 79.

Rapports sur deux mémoires de M. Van der Mensbrugghe sur la tension superficielle des liquides. Ibid., t. XXVIII, p. 17 et t. XXXV, p. 460.

Rapport sur une note du même sur la viscosité superficielle des lames de solution de saponine. Ibid., t. XXIX, p. 345.

Rapport sur une note du même sur un principe de statique moléculaire avancé par M. Lüdtge. Ibid., t. XXX, p. 286.

Rapport sur une note du même sur un fait observé au contact de deux liquides. Ibid., t. XXXIII, p. 172.

Rapport sur un mémoire de M. Delbœuf sur des recherches relatives à la mesure des sensations physiques. Ibid., t. XXXIV, p. 250.

Rapport sur une note de M. Verstraete sur le phénomène de la vue. Ibid., t. XXXVI, p. 305.

Rapport sur un mémoire de M. Van der Mensbrugghe relatif à l'influence de l'électricité statique sur la tension d'un liquide. Ibid., t. XXXVIII, p. 17.

Rapport sur une note du même sur la théorie capillaire de Gauss. Ibid., XXXIX, p. 366.

Rapport sur une note du même sur la surface de contact d'un solide et d'un liquide. Ibid., t. XL, p. 272.

Rapport sur un mémoire du même sur le problème des liquides superposés dans un tube capillaire. Ibid., t, XL, p. 669.

Rapport sur un mémoire du même sur l'énergie potentielle des surface liquides. Ibid., t. XLV, p. 574.

OUVRAGES NON PUBLIÉS PAR L'ACADÉMIE

Construire un triangle équilatéral qui ait ses sommets sur trois circonférences données. Correspondance math. et phys., 1827, t. III, p. 1.

Sur les sensations produites dans l'œil par les différentes couleurs. Ibid., 1228, t. IV, p. 51.

Sur les apparences que présentent deux lignes qui tournent autour d'un point avec un mouvement angulaire uniforme. Ibid., 1828, t. IV, p. 393.

De l'action qu'exerce sur une aiguille aimantée un barreau aimanté tournant dans un plan et parallèlement au dessous de l'aiguille. Ibid., 1830, t. VI, p. 70.

Lettre relative à différentes expériences d'optique. Ibid., 1830, t. VI, p. 121.

Sur quelques phénomènes de vision. Ibid., 1832, t. VII, p. 288.

Sur un nouveau genre d'illusions d'optique. Ibid., 1832, t. VII, p. 365.

Sur un phénomène de couleurs accidentelles. Ibid., 1834, t. VIII, p. 211.

Réponse aux objections publiées contre une théorie générale des apparences visuelles dues à la contemplation des objets colorés. Ibid., 1837, t. IX, p. 97.

Dissertation sur quelques propriétés des impressions produites par la lumière sur l'organe de la vue. Liège, 1829; in-4°.

Lettre sur une illusion d'optique. Ann. de chim. et de phys. de Paris, 1831, t. XLVIII, p. 281.

Des illusions d'optique sur lesquelles se fonde le petit appareil appelé récemment Phénakisticope. Ibid., 1833, t. LIII, p. 304.

Sur la persistance des impressions sur la rétine, traité de la lumière de Herschel, traduit par Verhulst et Quetelet, 1833, t. II, supplément, p. 471.

Sur les couleurs accidentelles. Ibid., p. 490.

Réponse à un article de M. Osann. Ann. de M. Poggendorff, 1836, t. XXXVIII, p. 626, Réclamation relative à un instrument proposé par M. Doppler. Ibid., 1849, t. XXXVIII, p. 284.

Sur la limite de la stabilité d'un cylindre liquide. Ibid., 1850, t. LXXX, p. 566.

Physique, 1^{re} partie, (en collaboration avec M. Quetelet). Encyclopédie populaire belge. Bruxelles, 1851-1855, in-24.

Sur le passage de Lucrèce, où l'on a cru voir une description du Fantascope. Biblioth. Univers. de Genève, 1852. 4° série, t. XX de la partie scientif., p. 300.

Sur une production curieuse d'anneaux colorés. Journal le Cosmos, 2° année. 1853. 3° vol. p. 191.

Réclamation au sujet d'un passage du mémoire de M. Helmholtz Sur la théorie des couleurs composées et rectification à un passage du mémoire de M. Unger Sur la théorie de l'harmonie des couleurs. Ann. de M. Poggendorff, 1853, t. LXXXVIII, p. 172.

Réponse aux observations présentées par M. Chevreul. Comptes-rendus de l'Académie des sciences de Paris, 1863, t. LVII, p. 1029.

Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Gand, 1873; deux vol. in-8°.